
Using gdb

1. Compile foo.s with
 gcc foo.s -g -o foo

2. Run either with
 gdb foo

 or with
 gdb -tui foo

Vanilla-mode gdb allows you to set breakpoints,
run or step through the program, and examine
both registers and memory.

If you are using this mode keep a window open
with the code file, preferably one that shows line
numbers. If your code file has 10 lines of
comments at the top, gdb will number the first line
of executable code as 11, so gdb's line numbers will
be the same as your editor's.

Graphical-mode gdb, which you get with the -tui
option, give you a code "window" in addition to a
command window, so with this you don't need a
separate editor with the program.

It is also possible to get the graphical mode to give
a third "window" which displays the values of the
main registers

The graphical mode uses the curses library for
text-based graphics, so it runs over the network,
but it is both fairly clunky and fairly slow.

If you are going to use it make your terminal
window quite large before you enter gdb.

The biggest advantage of the graphical mode is
being able to see the registers without specifically
querying them, so you might as well make use of
this feature.

Bring up the register window with the command
 layout regs

The commands for executing the program are

 run -- runs the program to the next
 breakpoint, or to the end. At any
 point you can restart the program
 with the run command.
 continue -- resume executing the program
 to the next breakpoint.
 step -- Does the next instruction. If this is a
 call it steps into the called function.
 next -- Also does the next instruction. If
 this is a call it steps over the called
 function.

The breakpoint commands are

 b <n> -- sets a breakpoint at line <n>
 info break -- gives a numbered list of the
 breakpoints you have set
 delete <n> -- deletes the nth breakpoint
 delete -- deletes all breakpoints

The print command is useful for displaying registers
(if you aren't using the register layout). The format
is

 print expression
such as
 print $rax

or
 print/d expression (as a decimal integer)
 print/x expression (as a hexidecimal)

The x command is for examining memory, which
for us primarily means the stack. The full format is
 x/nfu <address> where registers are used in
 indirect mode, so
 x $rsp prints the top value on the stack

The three arguments are
 n: number of values to print
 f: the format (d for base-10, x for hex)
 u: the size of the value (w for 32 bits, h for
 16 bits, and b for 8 bits) There is no
 way to ask for 64-bit values.

For example, if you have just pushed to integers
onto the stack you can see them with
 x/4dw $rsp
This might print 5 0 3 0.
The stack is then
 0 5 <-- $rsp
 0 3

In the command x/nfu the f argument defaults to
d (for base-10) and the u argument to w (for 32-
bits) so you can usually use it as
 x/n <address>
or even just
 x <address>
(n defaults to 1)

We use %rbx as our frame pointer. During a call
the arguments are at 16(%rbx), 24(%rbx) and so
forth; the local variables are at -8(%rbx), -16(%rbx)
etc. If there are two arguments we might print
them as
 x/4 16+$rbx

The first three local variables will be
 x/6 -24+$rbx
but these will print in reverse order: the higher
ones on the stack first.

help <command> gives you a brief summary of
what the command does and what its options
are.

